An Evaluation Framework for Publications on Artificial Neural networks in Sales Forecasting

نویسندگان

  • Sven F. Crone
  • Patrick C. Graffeille
چکیده

Although artificial neural networks (ANN) promise superior performance in forecasting theory, they are not yet an established method in business practice. The vast degrees of freedom to parameterize ANNs have lead to countless heuristic approaches to simplify modeling, training, network selection and evaluation implemented with varying success. Consequently, a systematic evaluation is required in order to identify successful heuristics and derive sound guidelines to ANN modeling from publications. As each forecasting domain imposes different heuristics for classification or point prediction on specific datasets, a literature review is conducted, identifying 2538 publications within the domain of ANN forecasting but only 32 of them applicable to the domain of sales forecasting. The identified publications are evaluated through a framework regarding their validity and reliability in experiment design and documentation, in order to promote superior publications, derive recommendations for future experiments and possibly identify gaps in current research and practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extended Evaluation Framework for Neural Network Publications in Sales Forecasting

While artificial neural networks (NN) promise superior performance in forecasting theory, they are not an established method in business practice. The vast degrees of freedom in modeling NNs have lead to countless publications on heuristic approaches to simplify modeling, training, network selection and evaluation. However, not all studies have conducted experiments with the same scientific rig...

متن کامل

An Approach of Artificial Neural Networks Modeling Based on Fuzzy Regression for Forecasting Purposes

In this paper, a new approach of modeling for Artificial Neural Networks (ANNs) models based on the concepts of fuzzy regression is proposed. For this purpose, we reformulated ANN model as a fuzzy nonlinear regression model while it has advantages of both fuzzy regression and ANN models. Hence, it can be applied to uncertain, ambiguous, or complex environments due to its flexibility for forecas...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004